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MONOTONE TRAJECTORIES OF 
DIFFERENTIAL INCLUSIONS AND 

FUNCTIONAL DIFFERENTIAL INCLUSIONS 
WITH MEMORY 

BY 

G E O R G E S H A D D A D  

ABSTRACT 

The paper  gives a necessary and sufficient condition for the existence of 
monotone  trajectories to differential inclusions dx/dt ~ S[x(t)] defined on a 
locally compact  subset X of R p, the monotonici ty being related to a given 
preorder  on X. This result is then extended to functional diffferential inclusions 
with memory  which are the multivalued case to retarded functional differential 
equations.  We give a similar necessary and sufficient condition for the existence 
of trajectories which reach a given closed set at time t = 0 and stay in it with the 
monotonici ty property for t => 0. 

Introduction 

Let X be a given subset of R p, S a correspondence (set valued map) from X 
into R p. The subset X is regarded as the state of a dynamical system and S(x) as 
the set of feasible velocities of the system when its state is x. A preorder (i.e. a 
relation both reflexive and transit.ire) is defined by a set valued map which to any 
x E X associates 

P(x) = {y ~ X/y ~ x}. 

Let Xo E X be given, we say that an absolutely continuous function " u "  from 
[0, To] into X, To >0,  is a "monotone trajectory for S starting at xo" if 

t u (d~) = Xo, 

(t) E S[u(t)] for almost all t E ]0, To[, 

for any s, t ~ [0, To], s < t implies u(t)E P[u(s)]. 
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Under reasonable assumptions on S and P, the main theorem of this paper gives 

when X is locally compact a necessary and sufficient condition for the existence 

of at least one monotone trajectory starting at x0 E X. This condition will be that 

S(x) N Tpt,~(x)~ 0 for all x E X, when 

Tp,,,,(x)={vERP/limlnf dp'''[x +Yv] = 0 }  
~,__~+ ')/ 

is the Bouligand's contingent cone. 

The theorem generalizes the Nagumo theorem [12] when S is single valued 

and P ( x ) =  X for all x E X. It generalizes as well different papers by M. 

Crandall [6], H. Br6zis [4], J. M. Bony [3], R. M. Redheffer [13], J. A. Yorke 

[15], [16], R. H. Martin [11], all in the single valued case. In the multivalued case 

the theorem appears to be an extension of results due to J. P. Aubin-A. Cellina- 

J. Nohel [2] with convexity assumptions and techniques from non-linear analysis, 

to J. P. Aubin-F. Clarke [1] when S is a continuous correspondence and F. 

Clarke [5] when S is a Lipschitz correspondence, both papers using the Clarke's 

tangent cone which is included in the Bouligand's cone, and finally to S. Gautier 

[7] with no monotonicity requirements. 

In a second part of the paper we prove the existence of monotone trajectories 

for functional differential inclusions with memory which are the multivalued 

extension of retarded functional differential equations as defined by J. Hale [9]. 

More precisely, for a given closed subset X of R p we define ~ to be the set of 

continuous functions from a given interval ( - r, 0], 0 < r = + oo, into R ~ reaching 

X a t t i m e  t = 0 .  

Let F be a given correspondence from ~ into R p and P a given preorder on 

X, for any d' ~ ~ we define a function U : ( - r, + oo[ into R p to be a "monotone 

trajectory with initial value ~b" if: 

U = d ~  on ( -  r,0], 

U is monotone with respect to P on [0, + o0[, 

U is absolutely continuous on [0, + oo[, 

dU --~-(t) E F[A(t)U] for almost all t E ]0, + oo[, 

where A(t)U is defined for t > 0  by: 

[A(t)U](O)= U(t+O) for all 0 E ( -  r,0]. 

Then under reasonable assumptions on F and P, we prove that for any 4~ E ~, 
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the existence of at least one monotone trajectory with initial value ~b is 

equivalent to F O b ) n  Tpt,~o)l[~b(0)] # ~ ,  which is similar to the condition of the 

first theorem. 

Such theorem extents to the multivalued case results by G. Seifert [14], 

S. Leela-V. Moauro [10] in the case of ordinary retarded functional differential 

equations with no monotonicity requirements. This theorem generalizes too a 

previous paper by G. Haddad [8] in the multivalued case with convexity 

assumptions and techniques from non-linear analysis. 

The motivations of this paper could be found in Mechanics where many 

problems dealing with differential inclusions do appear, in Control Theory when 

S(x) = {f(x, u)}u~u where u ranges over a subset U of "controls"  and where 

f(x, u) is the velocity of the system when the state is x and the control is u, in 

planning procedures in Microeconomics where problems are to find monotone 

trajectories for differential inclusions and in biological evolutions where func- 

tional differential inclusions with memory do effectively appear. 

I. ORDINARY DIFFERENTIAL INCLUSIONS 

1. Introduction 

Let X be a non-empty subset of R p, for all x ~ X we define the Bouligand 

contingent cone to be Tx (x) = {v E RP/lim~_.o • Inf dx(x + yv)/y = 0}, where 

dx ( ' )  denotes the distance to X. 

We verify easily that v ~ Tx (x) if and only if there exist a sequence {y,} of 

positive numbers with 3,, --~ 0 + as n --~ + oo and a sequence {x, } in X such that 

( x , - x ) / ~ , ~ v  as n ~  + ~ .  

The set T× (x) is then a non-empty closed cone which is larger than the tangent 

cone introduced by Clarke as: 

TC~(x)= v ~ R  P l imSup 
! .¢-~0 ÷ "y 

y ~ x  

Moreover  we verify easily that in the case when X is convex these two cones 

coincide with the natural tangent cone defined by T× ( x ) =  U ~ 0 A [ X - x ] .  

In the following, each preorder  on X will be presented by a set valued map 

P:X--~ X which satisfies the following properties: 

reflexivity: for any x E X, x E P(x), 

transitivity: for any x, y ~ X, y E P(x)implies P ( y ) C  P(x). 
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The preorder  is then obviously defined by y ~ x if and only if y E P(x). 

A correspondence (or set valued map) S from a topological space X into a 

topological space Y is said to be lower semi-continuous at Xo E X if to any open 

set oJ in Y such that co f7 S(xo) ~ 0 we can associate a neighborhood U(xo) of x0 

such that for any x E U(xo), S(x) f7 ¢0~ 0.  

We say that S is lower semi-continuous on X if S is lower semi-continuous at 

every point of X. 

The correspondence S is said to be upper semi-continuous at point x0 E X if 

to any neighborhood V of S(x0) we can associate a neighborhood U(xo) of xo 

such that for any x E U(xo), S(x) C V. 
We say that S is upper semi-continuous on X if S is upper semi-continuous at 

every point of X with compact values. 

We shall say that the preorder  is continuous if P is a lower semi-continuous 

correspondence with a closed graph in X x X. 

For example, if X C R p has no isolated points and if V : X---, R is a continuous 

function such that every local minimum is a global minimum, then the preorder  

defined by P(x) = {y E X/V(y)<= V(x)} is continuous. 

Another  example of continuous preorder  is when X is convex and P(x)= 

{ y E X / V ~ ( y ) =  < V~(x), i =  1 , . . . , m }  where each V~ is a continuous strictly 

convex function on X. 

2. Existence theorem of monotone solutions in a locally compact subset 

THEOREM I-1. Let X be a locally compact subset of R", P : X--~ X a given 
continuous preorder and S : X---* R p an upper semi-continuous non-empty convex 

compact valued correspondence. 
Then the following condition: 

(c) S(x )N  Tp(,)(x)~O, foraHx EX, 

is equivalent to the existence property: 
For any Xo E X there exist To > 0 and a Lipschitz function u : [0, To] ~ X such 

that u(O) = Xo with 

(I) ~t ( t )ES[u( t )]  foralmostaUtE]O, To[, 

together with the monotonicity property: 

for any s, t E [0, To], s < t implies u (t) E P[u (s)]. 
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Necessity of Condition (C) 

Let us suppose that for x,, ~ X there exist To > 0 and an absolutely continuous 

function u : [0, 7",)] ~ X such that u (0) = xo and verifying (I) together with the 

monotonicity property. 

First we deduce that du/dt is bounded on [t9, To] since S is upper semi- 

continuous thus bounded on the compact set u([0, To]). 

So u is a Lipschitz function. Let 1) denote the set of limit points of 

( u ( h ) -  xo)/h as h ---~0 ÷, by the remark made above and since we are in a finite 

dimensional space R p, it is obvious that lq ~ 0 .  

Furthermore the monotonicity of u implies that for all h > 0 ,  

u(h) ~ Plu  (0)l = P[x,,]. 

Thus it is clear that l )C  T~(~o)(xo). 

From S upper semi-continuous at xo, for any e > 0, there exists ~ />  0 such 

that for any x E X, IIx - xotl < n w e  h a v e  S(x) C S(xo) + eB where/3  denotes the 

closed unit ball centered at the origin in R p. 

The continuity of u makes obvious the existence of a > 0 such that for any ~', 

0_-<r =<a, u ( r ) - X o < r /  and then S[u(7)]CS(xo)+eB. 

Since u is a solution of (I) then for any h, 0 < h _-<_ ct, we have: 

1/o h du u(h)-h u(O) =-h -~z (z)dz CS(Xo)+ e/3 

which is a convex set since S is convex valued. 

Now by the compacity assumption on S, it is obvious that ~ C S (x0) + e/~ and 

this for any e > 0, which gives f t  C S(xo). This proves that S(xo) A T~(,~(xo) ~ 0 .  
For the rest of the proof of the theorem we shall need the preliminary lemma 

stated below. We denote  by/3(Xo, R )  the closed ball of radius R > 0 centered at 

XO. 

LEusca I- 1. Let all the hypotheses o[ the preceding theorem be verified. Since X 
is locally compact, let R > 0 be such that Xo = X N B (Xo, R)  is compact and let 

A > 0 verify A => Supv~s(x).x~Xo [I v 11. Then for any a > 0 there exists a finite 
sequence 0 = Oo < 01 < 02 < " .  < Om-~ < R/(A + a) <-<_ 0~, with 0~+~ - Ok < a to- 
gether with an associate sequence {xo, x~,". ,xm} in X such that for any 

k = 0, 1 , . .  -, m - 1 we have xk E Xo, XE÷I E P(XE) and the existence of yk ~ Xo 
depending on xk and vk E S(yk) verifying: 

( 1 )  II - 

11o-7S,-  
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PROOF OF LEMMA I-1. Let us first consider the application (x, y)--> dp,,,(y) 

defined on X × R p. It is then immediate to verify that the lower semi-continuity 

of correspondence P is equivalent to the upper semi-continuity of this applica- 

tion. 

Let a > 0 be given, then for all y @ X,  condition (C) implies the existcnce of 

vy E S(y)  such that: 

lim Inf day~[y + yvy] = 0. 

We deduce the existence of y ,  0 < % < a such that dpCv~[y + y,.vv]/y, < a. Let us 

consider V(y)  = {x E Xol dp¢x~[X + %vy]/% < a}; by the upper semi-continuity 

of the application x --~ dpm[x + 3'yvy] this set is obviously an open neighborhood 

of y in X0. Thus there exists fly, 0< f ly  < a ,  such that B(y. rt~)f3X,,CV(y) 
where B(y,  fly) is the open ball of radius r/y centered at y. 

Thus we can build an open covering of X0 compact by these open balls and 

then extract a finite sub-covering denoted B(yr, r/ ,) , '" " ,B(y, , r l , ) .  To each 

B(yi, ~ )  is associated %. denoted by yi and vy, E S(y,) denoted by v,. 

Then we have xoEB(y~,,%) for some i , ,E{1 , . . . , q}  which gives 

dP~o)[Xo + y~v~]/3'~ < a. 
So there exists x~ E P(xo)C X such that I I (x , -  Xo)/-/,,- v~,{t < ,~ with II X,r-- Y,,II < 

% < a and v~ ~ S(yz). We define 0r = Y~,- Then if 0r => R/()t + a) we stop and 

the result is proved. 

If 0r < R/(A + a) then 

R .(,~ + a ) =  R, fix,- xoll < ~/d~, + II o~,11) -<-, + ,~ 

thus x~ E Xo and we can continue with xt. Now by the same argument as before 

we have x~ (E B(y~,, rt~, ) for some i, E {1,. •., q}. We then deduce the existence of 

x ~ P ( x r )  such that II(x=-xr)/~',,-o,,ll<,~ with I lXr-y, , I I<W,,<~ and 

v,, E S(y~,). We define 02 = 0~ + % = 3,~,+ y~,. Then if 0_. >_- R/()~ + a) we stop and 

the result is proved. 

If O..< R/(A + a) then Ilx2- xoll<=llx:- x,H+llx,-  x,r]l which gives 

ilx=_xoll<=ty~,+y,,)ta+ A) < R y - ; - g ( ,  + ~) = R, 

thus x2 E X0 and we can continue. 

As we have a finite number of (7~)~=t,.. ,q all strictly positive, we are sure that 

after a finite number of operations we shall get 0,, > R/Qt + a) .  The iemma is 

then proved. 



Vol. 39, 1981 D I F F E R E N T I A L  INCLUSIONS 89 

We can now end the proof of Theorem I-1. 

PROOF. To a = 1/n with n a strictly positive integer we can associate by 

Lemma I-1 two finite sequences {0~")}k=l ... m and {x~")}k=l ... m having the proper- 

ties given by the lemma. We remark that m depends in fact on n. 

We can now define the function u, :[0,0~)]--->R p in the following way: on 

each interval [a(-) a(,) ] t"k , ,,k+lj the function u. is the linear function interpolating x~ "~ 

and (") X k + l .  

Thus for all t E [0~ "), a(,) 1 ,,k+~I we have: 

~(n)  - -  X(kn) 

u . ( t )  = x ' t  ) + [ t  - ~'")~ * ~+---~' 

Moreover  we notice that u . ( 0 ) = x o  and as we have O~):>R/(A + l / n )  the 

function u. is at least defined on [0, R/(A + l /n)] .  

Furthermore as u. is piecewise linear with 

~_.( '"' _x,t) t )  = X k + l  ,,(.) _ O(k. ) for t E ]O(k "), a(.) r ~k+lt ,  
Vk+l 

from (1) we have the existence of y~")E Xo and v~"JE S(y~ ")) such that 

du. v't'[ 1 
IIx ' t ' -  y't'll < X/n and dt ( t ) -  <n" 

Thus 

It-~t"(t)tl <l[v~"~lj÷l--< A +I- -<A + l ' n  

So the function u, is (h + 1)-Lipschitz on [0, 0~ )] and then obviously on 

[O,R/(A+I/n)]. Furthermore,  since ,,k+l'~t")-0~")<l/n we have for all 

t E[0~ "), at-) ] with k E{0,1 , -"  . ,m - 1}, Vk+lJ 

JJu,(t)-x~")ll<-_(t - 0~"))(A + 1)-< (0~2 , -  0~"))(A + 1)_-<(A + 1)/n. 

Thus as x~")EXo for all k E { 0 , 1 , . . . , m - 1 }  we deduce that dxo[u.(t)]<= 
(A + 1)/n and this for all t E [0, R/(A + l /n)]  C[0, 0~)]. 

We can then build a sequence of such functions u, defined on increasing 

intervals [0, R/(A + l /n)] .  But by the very properties of the functions u,, and 

using Ascoli's theorem, it is possible to extract a subsequence (again denoted u.)  

which converges uniformly on every compact subset of [0, R/A[ to a function 

u : [0, R /h  [--* R p such that u (0) = x0, u (t) E X0 for all t E [0, R/A [ since we have 

dxo[u(t)] = lim . . . .  dxo[U,(t)] = 0 with X0 compact. 
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Furthermore we easily verify that u is )t-Lipschitz on [0, R/A [ since each u, is 

in fact (h + I/n) Lipschitz on [0, R/(A + l/n)]. And obviously u can be extended 

by continuity on [0, R /h  ] to a A-Lipschitz function with values in Xo compact. So 

du(t)/dt exists almost everywhere on ]0, R/A [ and du/dt E L®([0, R/A ], R e ). 
We shall now prove that u verifies (I) for almost all t E ]0, R / h  [. For this let us 

fix T, 0 < T < R/A, then for n large enough we are sure that T <= R/(A + 1/n). 
Thus for all s, t E [0, T] we have 

u . ( t ) - u . ( s ) =  f ' - ~ ( z ) a z  

and since the derivatives du./dt 

(' du d convergesto u ( t ) - u ( s )  = J~ -d-[(z) z 

are equibounded on [0, T] we deduce from 

L~([0, T], R p) C L 1([0, T], R p) that the sequence du./dt converges weakly to 

du/dt in L 1([0, T], R e ). Then using Mazur's convexity theorem we can build a 

sequence of convex combinations of the following type: 

+ ~  

I~p = ~, a" dU" with "=> 0, 
,=p P dt a p 

all but a finite number equal to zero and 2,+~pa~, = 1, such that /xp converges 
strongly to du/dt in L'([0, T], R p ) as p ~ + 0o. 

Then we can extract a subsequence of go (again denoted/xp for simplicity) 

which converges pointwise to du(t)/dt for almost all t E ]0, T[. Let t E ]0, T[ be 

such a point of convergence. Since S is upper semi-continuous, for any e > 0 

there exists 7 / > 0  such that for all x E X ,  Hx-u(t)ll<71 implies 
S(x)cS[u( t )]  + eB. Furthermore for all n, there exists an interval fa~-) a(-) 1 t U k  , V k + l J  

such that t E [0~ "), at-) r ~,k+~ t with 

_~t. ( ~") - x ~  "~ 1 t )  ~--" - " . k + l  Vk+l~(n) - -  ~,~+ta~") _ 0~-) where 0~")< -n 

and from (1) we have the existence of y~") E Xo C X depending on x~ ") such that 

I -~ ." ( t ) -v~" ' l l<  1 with vt~")~S(y~")). Ily?)- x~°'ll < l/n and 
l U t  II n 

Thus from the inequality: 

II y ' ; ' -  u (t)ll--< II y~°) -  u.  (0 ' ; ' )II  + II u. (0 t  ")) - u.  (t)ll + II u.  ( t)  - u (t)ll 

with u,(O~ "~) = x(k "~ and since u,(t) converges to u(t), each u, being (A + 1)- 
Lipschitz which gives: 

Ilu.(o'; ')-  u(t)ll_-< (,~ + 1)( t  - o~"))_-< (A + 1 ) ( o ~ ) 1 -  o~")) < (A + 1)/n 
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we deduce easily that for n large enough we have II Y~"'- u (t)ll < ~ which implies 

that S(y~"') C S[u(t)] + eB. 
Thus v~"'E S[u(t)] + eB and from II d u . ( o / a t  - v' "'ll < 1/n we deduce that for 

n large enough we have du.(t)/dt ~ S[u(t)] +2e/~ which is convex since S is 

convex valued. 

Thus for p large enough we have u,(t) E S[u(t)] -+ 2e/~ which is closed since S 

is compact valued. Now taking the limit as # ~ + 00 we get du (t)/dt E S[u (t)] + 

2EB. 

But since this is verified for any e > 0  and since S[u(t)] is compact we get 

du (t)/dt E S[u (t)], and this for almost all t ~ ]0, T[. But since this is true for any 

T < R/A, we are sure that (I) is verified for almost all t E ]0, R/)t [. For the 

theorem we take To = R/;t. To finish we must now verify the monotonicity of u. 

Let s, t E [ 0 ,  R/A[, s < t  be given. Then for n large enough we have s E  

ok+,j and t E [0~ ">, with k + 1 < op+~j = p. Then by the definition of u, and by 

the transitivity of P we deduce from Lemma I-1 that u,(O~ "~) -- ~p~<"; ,--'- - t - ,  k+~j°r:<") 1 _- 

P[u. (0~21)]. It is then obvious to verify that u. (0~"))---~ u(t) and u. (0~2~)---~ u(s) 
as n + + oo and as the graph of P is closed we get u( t )E  P[u(s)]. For the same 

reason and thanks to the continuity of u at R/A we have also u(R / ) t )~  

P[u(s)]. The proof is then complete. 

As an immediate consequence of this theorem we can give the following 

corollary. 

COROLLARY I-1. Let X be a locally compact subset of R p, S : X --> R p an upper 
semi-continuous non-empty convex compact valued correspondence. Then the 
following condition: 

(c') S ( x ) f ' ) T x ( x ) ~ O ,  [ o r a l l x E X  

is equivalent to the existence property: 

For any Xo E X there exist To > 0 and a Lipschitz [unction u : [0, To] ~ X such 
that u (0) = Xo with : 

du 
([) 7i i t )  ~ S[u(t)] for almost all t ~ ]0, To[. 

PROOF. The proof is immediate by taking P(x)= X for all x ~ X. 

REMARK 1. We have considered solutions for initial time t = 0; the result is 

in fact the same for any initial time to ~ R, the solution being defined on the 

interval [to, to + To]. 
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REMARK 2. Since locally compact subsets of R p are all the subsets which are 

the intersection of an open and of a closed subset, Theorem I-1 and its Corollary 

are particularly applicable to open or closed subsets of R ~. 

REMARK 3. If X is closed we can choose R > 0 independently from Xo to get 

X t-I/~ (x,,, R)  compact. Then if we suppose that S is bounded on X by A > 0, 

since all solutions of (I) can be defined on [t,,, to+ R/A] for any toER and any 

initial value in X, it becomes obvious that the solution u of Theorem I-1 can be 

extended on [0, + ~[ and will be A-Lipschitz. 

If X is compact we are exactly in that situation. 

3. The time dependent version 

We can now give a time dependent  version when the subset depends on time. 

"I'HEOREM I-2. Let t -~ K ( t ) C R  p be a non-empty valued correspondence de- 

fined on [ 0 ,+ ~ [  with a locally compact graph Y{. Let S : 5~r--~R p be an upper 

semi-continuous non-empty convex compact valued correspondence such that for 

all t >-_0 and all x E K( t )  there exists v E S( t ,x)  verifying: 

(C,) limh_o.Inf dm,+,~[Xh + hv] = O. 

Then this is equivalent to: 

For all x,,E K(0), there exist T o > 0  and a Lipschitz function u :[0, To]---~R p 

such that u(0) = x,,, u ( t ) E  K(t)  for all t ~ [0, T] and 

du 
(I') -d-[(t)E S[t,u(t)] for almost all t E ]O, To[. 

PROOF. Since 

-~  ( t ) =  lira w i t h u ( t + h ) ~ K ( t + h )  
u(t + h ) -  u(t) 

h~4J" h 

we see that condition (C~) appears to be necessary with a proof similar to the one 

of Theorem 1.1. 

For the sufficiency let us consider the correspondence H : 5~---* R × R p defined 

by H(t ,x )  ={1}× S(t,x).  

We see that H is obviously semi-continuous non-empty convex compact 

valued. Moreover,  for (t, x) ~ 5Y{ let us consider (1, v) E H(t, x) with v given by 
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condition (Cj). Then from (C;) we have the existence of h.---~O ÷ and x. E 

K ( t + h . )  such that H ( x . - x ) / h . - v l l - - ~ O  as n ----~ + ~ .  

It becomes obvious to verify that we have: 

( t + h " ' x " ) - ( t ' x ) - ( 1 ,  v) ---~0 as n---~+oo 
h .  

the norm being taken on the product space R × R e. Then we have 

lim Inf d~[(t, x )+  h(1, v)] = 0 
h~414 h 

and since ~ is locally compact, H verifies all the hypotheses of Theorem I-1. 

Thus there exist To > 0 and a Lipschitz function ~--~ (t(~), u (~ ) )E  ~ defined 

on [0, To] such that t(0) = 0, u(0) = xo and verifying: 

ds ~ =1 ,  

d~(~) ~ s[t(~), u (01 for almost all ~ E ]0, To[. 

And now the end of the proof becomes obvious. 

REMARK 4. If S is assumed to be bounded and Yg closed, by Remark 3 we 

can extend the solution u on [0, + ~[. 

4. Solutions on a subset defined by constraints 

The following theorem will give for a subset Z defined by Z =  

{x E X / L x  E Y}, a tangential condition involving X, Y and L rather than Z 

itself. 

THEOREM 1-3. Let X C R  p and Y C R  q, two non-empty closed subsets, and 

L E ~ ( R  ", R q) be given. 

If  S : X - *  R p is an upper semi-continuous non-empty convex compact valued 

correspondence such that for all x E X there exists v ~ S(x )  verifying: 

(C~) 
1 _  

lim Inf--~ Max{dx(x + yv), dy (L(x  + yv)) - dr (Lx)} = 0. 
.g___~0 + ')/ 

Then for any Xo ~ X such that Lxo ~ Y, there exist To > 0 and a Lipschitz function 

u : [0, To] ---> R p which verifies: u (0) = x, u (t) ~ X and Lu (t) E Y for all t E [0, To] 

together with : 
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(I) -~(t) E S[u(t)] for almost all t E ]0, To[. 

PROOF. The proof is very similar to the proof of Theorem I-1, when no 

preorder  is considered. We shall give only the main features. 

For R > 0 we consider the compact set X0 = X N/~ (x0, R )  and A > 0 such that 

--> Supo~s,x,.x~,,oll o II. 
Then as in Lemma I-1, let a > 0 be given. By (C2), for any y E Xo there exist 

vy E S(y)  and y ,  0 < y, < a such that: 

1 
Max ~-{d× (y + 3,yvy), dy [L(y  + 3,yv,)] - dr  (Ly)} < a. 

Then we consider V(y)  defined by: 

= {x E X o / 1 M a x { d x  (x + yyvy), dr [L(x + ,/,v,)] - de (Lx)} < a}. V(y)  

This set is obviously an open neighborhood of y in Xo. Thus if we continue as in 

the proof of Lemma I-1, we prove the existence of 0 = 00 < 01 < • " < 0,.-1 < 

R/(A +a)<=O.~ with Ok+t--Ok < a  together with an associate sequence 

{Xo, X l , ' " , x m }  in X such that for any k = 0 , 1 , - . - , m - 1  we have xk E X 0  and 

the existence of yk E X0 depending on xk with vk E S(yk) such that: 

(1) xk+l - xk 
--- Ok vk < or, 

with, in addition: 

(2) 
dy[L(x~ +(Ok+,- O~)t,,)] - d y ( L x k )  < a. 

0 ~ + 1 -  O~ 

Thus we get: 

dy(Lxk+a) - d~,(Lxk ) = dy(Lxk+~) - dv[L(xk + ( 0,+~- Ok )vk)] 
Ok + ~ - O~ Ok + l - O~ 

+ dv[L(xk + (Ok+~- Ok)vk)] -- dy(Lxk) 
Ok + l - O~ 

Then, using (2), the linearity and continuity of L together with the fact that the 

function dr  ( ' )  is Lipschitz gives: 
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ay (Lxk +1) - ay (Lxk) <= 11Lxk +, -- L (xk + (Ok +1 - Ok )vk)ll + a 
Ok + ~ - Ok Ok + ~ - Ok 

X k + l  - -  X k  

Thus we have: 

II fl ~IILII 0k+,--0k Vk +a 

~llLlla + a  by (1). 

(3) dy (Lxk+,)- d~, (Lxk) <= [0k+,- Ok]" [IlL [la + a] .  

Summing these inequalities from j = 0 to k + 1 and using the fact that dy (Lxo) =- 

0 we get: 

(4) d~ (Lxk +1) =< Ok+, Ill L II a + a ]. 

Then as in the proof of Theorem I-1 we build the sequence of functions u, 

defined on [0, R/()t + l /n)]  and prove the existence of a A-Lipschitz function 

u : [0, R/A ] ~ Xo C X such that u (0) = Xo verifying (I) for almost all t E ]0, R/)t [. 

The only difference is to prove that L u ( t ) E  Y for all t E [0, R/A].  
Let first t ~ [0, R/A] be given, for n large enough we have t < R/(;t + 1/n) 

and t E[0~ "J, 0~+~1] C[0, R/A].  Moreover by the properties of u, and u we know 

that u.(0~+l)~") = ~,k÷l~") ---~u(t) as n---~ +oo. Then by (4) we have: 

d,:[Lxk+,]= vk+, n 

Taking the limit as n---) +~ we get d~. [Lu(t)] =0, thus Lu(t)E Y which is 

closed. By continuity we also have Lu (R/A) E Y and the proof is complete. 

REMARK 5. Always as in Remark 3, if S is bounded, then u can be extended 

on [0, + ~[ with the same properties. 

II. FUNCTIONAL DIFFERENTIAL INCLUSIONS WITH MEMORY 

We define ~ = ~ [ ( - r ,  0], R p ] the space of continuous functions from ( - r ,  0] 

into R p. If not specified, the interval ( - r , 0 ]  can be either [ - r , 0 ]  when 

0 < r < + oo or ] - r, 0] when 0 < r =< + oo. The topology on qg will be the topology 

of uniform convergence in the first case and the topology of uniform con- 

vergence on compact s',bsets in the second case. For any t ---0, let A (t) be the 
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operator which to any continuous function U, defined at least on the interval 

( - r ,  t], associates the function A ( t ) U  E qg such that: 

[A(t)U](O)= U(t+O) for all 0 E ( -  r,0]. 

Let 1-1 be a non-empty subset of c¢, F:V~--~ R p a given correspondence with 

non-empty values, we call an autonomous functional differential inclusion with 

memory the differential inclusion: 

(M) ddUt (t ) E F[A ( t )U].  

A solution to (M) is a continuous function U from an interval ( - r, T) into R P 

with 0 < T _-< + oo such that: 

t U is absolutely continuous on every compact subset of [0, T), 

A ( t ) U  E f l  for all t E [0, T), 

~ t ( t )  E F[A ( t )U]  almost t E ]0, T). for all 

We shall say that U is a solution to (M) with initial value 4' E qg if U is a solution 

of (M) and verifies A (0) U = 4', which is equivalent to U = 4' on ( - r, 0]. 

For simplicity we only consider solutions for initial time t = 0 and this with no 

loss of generality. 
Let now X be a non-empty closed subset of R e; we define by ~ the set of all 

4' E c£ such that 4'(0) E X. The topology on ~ will be induced by the topology of 
qg. 

We can now state the following theorem: 

THEOREM II-1. Let F : ~ - ~ R  p be an upper semi-continuous correspondence 
with non-empty convex compact values. We suppose that F is bounded on 4, 
which implies the existence of A > 0  such that supo~F(,),.~llvll_-<A. Then the 

following condition: 

(C3) F(4")ATx(4 ' (O))#O f o r a n y 4 ' E ~  

is equivalent to the existence property: 
For any given 4' E • there exists a continuous function U : ( - r, + oo[---~ R" such 

that A (0) U = 4', U ( t ) E X for all t >- O, U is A-Lipschitz on [0, + oo[ and verifies: 

(M) dU ( t ) E F [ A ( t ) U ]  foralmostallt  >O. 
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Necessity o/Condition (C3) 

The proof of the necessity of ((]3) is similar to the proof in the first part. For the 

sufficiency we shall need a preliminary lemma stated below. 

LEMMA II-1. Let F be gioen exactly as in the theorem and ck E ~g. Then/or any 
strictly positive integer n, there exists a/unct ion U. : ( - r, + oo[---) R e such that 

A (0)U. = ~k, U.(t)  ~ X / o r  all t >= O, U. is a-Lipschitz on [0, + oo[ and verifies the 
/ollowing property: 

diS.dr ( t ) E F [ A  ( - - ~ )  0k/.,u,o,] 

(5) 
/or any k ~ N and/or almost all t E [ k / n, ( k + 1)/n ]. 

The function d/k/,,x : ( -- r,(k + 1)/n]---~R e is defined/or any k E N  and x E X by 

~k/,,~ = U. on the interval ( -  r, k /n ] and as the linear function which interpolates 
U . ( k / n )  and x on [k /n , (k  + 1)/n]. 

PROOF OF LEMMa II-1. We shall build U. by induction on each [k/n, 
(k + 1)/n], k EN.  For any x E X let us define q/o,~ : ( -  r, 1/n]---~R P by ~bo, x = d~ 

on ( - r ,  0] and 

¢o,~ (t) = 4~ (0) + nt (x - ck (0)) for t E [0, 1/n ]. 

Let,  us then consider the correspondence So: X--~ R e defined by So(x) = 

F[A(1/n)$o,x] for any x E X .  Since we verify easily that the mapping 

x--~A(1/n)~o,x is continuous from X into c~, the correspondence So is upper 

semi-continuous convex compact valued. Furthermore, since F is bounded by A, 
the same is true for So on X. 

At last from (C3) and from [A(1/n)q/o.~](O) = ~bo,x(1/n) = x we see that: 

(C') So(x) f3 Tx (x ) ~ 0 for any x E X. 

Thus So verifies all the hypotheses of Theorem I-1 and by its boundedness on X 

we have the existence of a h-Lipschitz function uo : [0, + oo[ ~ X solution of the 

differential inclusion 

(io) (t ) E So[u (t)] = F [ A  (I/n )~bo..o,], 

for the initial value uo(O) = ~(0). 

We only consider Uo on [0, 1/n] and define IS. = Uo on [0,1~hi. Condition (5) is 
then verified by Dr, on [0,1/n]. 
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Now, for any x E X we define ~,.., : ( - r , 2 l n ] - - * R  p by ~1/,~, = tk on ( - r , 0 ] ,  

O,,~x = Uo on [0, 1/n] and qJl/,.x(t) = Uo(1/n)+ n ( t -  1/n)(x - u(1/n)) for any 

t E [1/n, 2/n]. 
Let us then consider the correspondence St :X--->R e defined by S~(x)= 

F[A (2/n)O,.., ] for any x E X. Then by exactly the same argument as for So we 

verify the existence of a A-Lipschitz function m:[1/n, + oo[-+ X solution of the 

differential inclusion 

(I) ~t ( t ) ~ S,[ u (t)] = F[ A (21n )~b l/u,,,], 

for the initial value m(1/n)= Uo(1/n). 
We only consider u~ on [I/n, 2/n] and define U, = u~ on [1/n, 2/n]. Condition 

(5) is then verified by U, on [1/n,2/n]. 
By induction we complete the construction of Dr, on [0, + ao[ and the lemma is 

proved. 

We can now give a proof of Theorem II-1. 

PROOF. Let us consider the sequence (U,).=~ as given by the preceding 

lemma. 

Each U, is equal to 4~ on ( - r, 0], a-Lipschitz on [0, + oo[. Thus using Ascoli's 

theorem there exists a function U : ( - r ,  +oo[--'-R P, A(O)U = tk, and a subse- 

quence (again denoted U,) which converges uniformly to U on every compact 
subset of [0, + oo[. 

As each U,, the function U is )t-Lipschitz on [0, + oo[ and since X is closed we 

have U(t) E X for any t >= 0. 

We must now prove that U is a solution to (M). For this it is sufficient to prove 

that for any strictly positive integer T we have: 

dU 
dt (t) E F[A (t)U] for almost all t E ]0, T[. 

The arguments of the proof are in fact the same as those of the proof of Theorem 

I-1. The only difference is to prove that for some t E ]0, T[ chosen as in the proof 

of Theorem I-1 we have: 

dU"(t) E F[A (t) U] + for n large enough. 

Since F is upper semi-continuous on ~, for any e > 0 there exist a7 > 0 and 

[ - r , , O ] C ( - r , O ]  such that for any ffE,~', IId/-A(t)Ullt_,..ol<-~ implies 

F(O) CF[A(t)U] + eB. 
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Let us consider A ( ( k  + 1)/n)O~..v.to with t E [k/n, (k + 1)/n], as defined in 

Lemma II-1. 
We have: 

But by the uniform continuity of U on the compact interval [ - r~, T] we deduce 

easily from the definition of A ((k + 1) /n )U and A (t)U, that for n large enough: 

At last by the definition of ~k/,~e.~,~ we have: 

and 

g'kl~.v.~o(s ) = Un(k /n ) + n(s - k /n )( U~( t ) -  Un(k /n )) 

for all s E [k/n, (k + 1)/n]. 

This together with the fact that U. = U = ~ on ( -  r, 0], that Un converges 
uniformly to U on every compact subset of [0, + o0[, being A-Lipschitz leads 

obviously to: 

for n large enough. 

Thus we have F [ A ( ( k  + 1)/n)Ok,,~u.~O] C F [ A ( t ) U I  + eB, dUn(t)/dt ~- 

F [ A ( t ) U ]  + eB which is the desired property. 

THEOREM II-2. Let F : X---~R ~ be a bounded upper semi-continuous corres- 

pondence with non-empty convex compact values and P : X --} X a given continu- 

ous preorder. 

Then the following condition: 

CI ( 3 )  F(4~) N TpK,¢o)j(4~ (0)) ~ O ~ o r a n y ~ E ~  

is equivalent to the existence property: 

For any given d~ E • there exists a continuous function U: ( - r, + oo[-. R p such 
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that A (O)U = ~b, U(t ) ~ X [or all t >- 0, U is Lipschitz and monotone with respect 

to P on [0, + ~[ and verifies: 

(M) ~ ( t ) E F [ A ( t ) U ]  foralmostall t  >0.  

PROOF. The proof is exactly the same as the proof of Theorem II-1; the 

monotonicity is verified since the functions u, used in the proof are monotone 

with respect to P thanks to condition (C~). 
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